1,170 research outputs found

    NADPH-diaphorase reactivity in ciliary ganglion neurons: A comparison of distributions in the pigeon, cat, and monkey

    Get PDF
    Ciliary ganglia from the pigeon, cat, and monkey were investigated for the presence of NADPH-diaphorase reactivity by use of a standard histochemical method. In the pigeon, where the ganglion is known to control lens and pupil function, and the choroidal vasculature, about one-third of the ganglion cells were densely stained and most other somata were lightly stained. In some cases, preganglionic terminals with a cap-like morphology were also darkly stained. The pattern of NADPH-diaphorase staining in mammals was very different from that seen in pigeons. In both mammalian species, where the ganglion is known to control lens and pupil function, a small number (less than 2%) of the ganglion cells were shown to be densely NADPH-diaphorase positive, revealing their neuronal processes. The presence of NADPH-diaphorase positive cells in pigeon, cat, and monkey ciliary ganglia suggests that nitric oxide may be used for intercellular communication in this ganglion, or in light of the known importance of nitric oxide in vascular control, some of these positive neurons may participate in the control of choroidal vasodilation

    Epidemic Enhancement in Partially Immune Populations

    Get PDF
    We observe that a pathogen introduce/pmcdata/journal/plosone/2-2007/1/ingest/pmcmod/sgml/pone.0000165.xmld into a population containing individuals with acquired immunity can result in an epidemic longer in duration and/or larger in size than if the pathogen were introduced into a naive population. We call this phenomenon “epidemic enhancement,” and use simple dynamical models to show that it is a realistic scenario within the parameter ranges of many common infectious diseases. This finding implies that repeated pathogen introduction or intermediate levels of vaccine coverage can lead to pathogen persistence in populations where extinction would otherwise be expected

    The proteasome cap RPT5/Rpt5p subunit prevents aggregation of unfolded ricin A chain

    Get PDF
    The plant cytotoxin ricin enters mammalian cells by receptor-mediated endocytosis, undergoing retrograde transport to the endoplasmic reticulum (ER) where its catalytic A chain (RTA) is reductively separated from the holotoxin to enter the cytosol and inactivate ribosomes. The currently accepted model is that the bulk of ER-dislocated RTA is degraded by proteasomes. We show here that the proteasome has a more complex role in ricin intoxication than previously recognised, that the previously reported increase in sensitivity of mammalian cells to ricin in the presence of proteasome inhibitors simply reflects toxicity of the inhibitors themselves, and that RTA is a very poor substrate for proteasomal degradation. Denatured RTA and casein compete for a binding site on the regulatory particle of the 26S proteasome, but their fates differ. Casein is degraded, but the mammalian 26S proteasome AAA-ATPase subunit RPT5 acts as a chaperone that prevents aggregation of denatured RTA and stimulates recovery of catalytic RTA activity in vitro. Furthermore, in vivo, the ATPase activity of Rpt5p is required for maximal toxicity of RTA dislocated from the Saccharomyces cerevisiae ER. Our results implicate RPT5/Rpt5p in the triage of substrates in which either activation (folding) or inactivation (degradation) pathways may be initiated

    Nitrogen in diamond

    Get PDF
    Nitrogen is ubiquitous in both natural and laboratory-grown diamond, but the number and nature of the nitrogen-containing defects can have a profound effect on the diamond material and its properties. An ever-growing fraction of the supply of diamond appearing on the world market is now lab-grown. Here, we survey recent progress in two complementary diamond synthesis methods—high pressure high temperature (HPHT) growth and chemical vapor deposition (CVD), how each is allowing ever more precise control of nitrogen incorporation in the resulting diamond, and how the diamond produced by either method can be further processed (e.g., by implantation or annealing) to achieve a particular outcome or property. The burgeoning availability of diamond samples grown under well-defined conditions has also enabled huge advances in the characterization and understanding of nitrogen-containing defects in diamond—alone and in association with vacancies, hydrogen, and transition metal atoms. Among these, the negatively charged nitrogen-vacancy (NV–) defect in diamond is attracting particular current interest in account of the many new and exciting opportunities it offers for, for example, quantum technologies, nanoscale magnetometry, and biosensing

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    Academic neurosurgery in the UK: present and future directions.

    Get PDF
    Academic neurosurgery encompasses basic science and clinical research efforts to better understand and treat diseases of relevance to neurosurgical practice, with the overall aim of improving treatment and outcome for patients. In this article, we provide an overview of the current and future directions of British academic neurosurgery. Training pathways are considered together with personal accounts of experiences of structured integrated clinical academic training and unstructured academic training. Life as an academic consultant is also described. Funding is explored, for the specialty as a whole and at the individual level. UK academic neurosurgical organisations are highlighted. Finally, the UK's international standing is considered

    A large CRISPR-induced bystander mutation causes immune dysregulation.

    Get PDF
    A persistent concern with CRISPR-Cas9 gene editing has been the potential to generate mutations at off-target genomic sites. While CRISPR-engineering mice to delete a ~360 bp intronic enhancer, here we discovered a founder line that had marked immune dysregulation caused by a 24 kb tandem duplication of the sequence adjacent to the on-target deletion. Our results suggest unintended repair of on-target genomic cuts can cause pathogenic bystander mutations that escape detection by routine targeted genotyping assays
    corecore